Roll No. Total No. of Pages: 02

Total No. of Questions: 09

B.Tech.(AE) (2011 Onwards) (Sem.-5)
HEAT TRANSFER

Subject Code : BTAE-503 Paper ID : [A2063]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1) Write briefly:

- 1. Differentiate between fin efficiency and fin effectiveness.
- 2. List down the three types of boundary conditions.
- 3. Define Nusselt number and Stanton number.
- 4. Define thermal diffusivity and explain its physical significance.
- 5. How are heat exchangers classified based on flow arrangement?
- 6. Why are the convection and the radiation resistances at a surface in parallel instead of being in series?
- 7. How does the Grashoff number differ from the Reynolds number?
- 8. What is the critical radius of insulation? How is it defined for a cylindrical layer?
- 9. State the Kirchoff's law of radiation.
- 10. What do you mean by energy balance in heat transfer of IC engines?

SECTION - B

- 2) Explain the different modes of heat transfer with appropriate expressions.
- 3) Define Reynold's, Nusselt and Prandtl numbers.
- 4) Write a short note on temperature distribution and stresses in piston of IC engines.
- 5) The temperature of a body of area $0.1~\text{m}^2$ is 900 K. Calculate the total rate of energy emission, intensity of radiation in W/(m² sr), maximum monochromatic emissive power and wave length at which it occurs.
- 6) Derive the relation for critical thickness of insulation for pipes.

SECTION - C

- 7) Hot oil with a capacity rate of 2500 W/K flows through a double pipe heat exchanger. It enters at 360 °C and leaves at 300 °C. Cold fluid enters at 30 °C and leaves at 200 °C. If the overall heat transfer coefficient is 800 W/m² K, Determine the heat exchanger area required for :
 - a) Parallel flow
 - b) Counter flow
- 8) Starting from basic derive the equation for heat dissipation and temperature distribution by a fin with an insulated tip 10
- 9) a) Prove that intensity of radiation $(I_b) = (1/\pi)E_b$ where E_b is emissive power of black body.
 - b) Derive the 3-D general conduction equation in rectangular coordinates.